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Abstract Several thousand fungal species worlwide are
thought to form ectomycorrhizas (ECM) with tree
hosts and there is currently much interest in determin-
ing the functional significance of such diversity in natu-
ral and managed ecosystems. While only a few taxa
have been investigated in detail, it is clear that ECM
fungi display extensive intraspecific variation in a range
of physiological and other life-history parameters.
Thus, comparative investigations of single (or even a
few) isolates of different species are unlikely to provide
reliable information on functional capabilities. Exten-
sive screening of taxonomically well-defined isolates is
required. This must take into account spatial and tem-
poral variation in gene expression in mycelia growing
in axenic culture or in association with a host plant.
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Introduction

On a global scale, several thousand fungi are thought to
form ectomycorrhizas (ECM) with tree hosts in natural
and managed forest habitats (Molina et al. 1992). At a
more local level, below-ground ECM fungal species
richness is also high. Recent molecular investigations
have shown that communities within single monocul-
ture forest stands comprise diverse arrays of species,
many of which remain ill-defined taxonomically (e.g.
Gardes and Bruns 1996; Dahlberg et al. 1997). Howev-
er, scant data are available on the relative abundance of
such taxa in and between different habitats. Further-
more, while overall diversity is thought to be important

to ecosystem functioning, the functional significance of
individual taxa is very poorly understood. As high-
lighted by Bruns (1995), the factors controlling ECM
fungal diversity at global, regional, and even single-root
levels remain the subject of debate. Thus, diversity in
below-ground ECM fungal communities may be symp-
tomatic of niche differentiation (resource partitioning),
competition and/or environmental disturbance. Bruns
(1995) cited the major barriers to understanding ECM
fungal diversity, along with its functional significance,
as our inability to identify below-ground mycelia and a
lack of information regarding taxon-specific life histo-
ries. Although the growing availability of molecular
tools for fungal identification in recent years has led to
excellent progress in identification, our appreciation of
the below-ground activities of ECM fungi remains very
poor and constitutes a major hurdle to understanding
the functional importance of diversity.

It is likely that many ECM fungal taxa fulfil broadly
similar ecological functions and that a degree of ‘func-
tional redundancy’ exists in ECM fungal communities
(see Allen et al. 1995). Given their taxonomic diversity,
however, communities of ECM fungi are still likely to
retain a vast amount of functional heterogeneity. Func-
tional redundancy in ECM fungi has been addressed to
some extent by partitioning taxa into guilds such as
“late-stage”, “early-stage” and “multi-stage” (Mason et
al. 1982; Danielson 1984) or “protein”, “non-protein”
and “intermediate” (Abuzinidah and Read 1986). Ad-
dressing the difficulties associated with the former clas-
sification, Smith and Read (1997) argued that, with our
current level of understanding, broader descriptors
such as “r-” and “K”-selected are more meaningful.
Partitioning into guilds by relative ability to utilise, for
example, certain nitrogenous substrates may also be
misleading, particularly based on the relative abilities
of single, or only a few, isolates (e.g. Abuzinidah and
Read 1986). This tendency to generalise ecological
functionality from comparative studies of a few isolates
reveals little of the intrinsic physiological potential of
most ECM fungal taxa.
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A survey of the literature indicates that few compara-
tive studies have been conducted using five or more
isolates of a single ECM fungal species (Table 1). In
fact, only ca. 20 species from nine genera have been in-
vestigated at this level for at least one parameter,
meaning that our appreciation of intraspecific diversity
in ECM fungi is currently scant indeed. However, as
larger populations of these taxa are screened, it is in-
creasingly evident that intraspecific physiological varia-
tion in ECM fungi is large, and that this may cloud our
understanding of functional diversity. The aim of this
review is thus to consider the extent to which intraspe-
cific physiological variation exists in particular ECM
fungal taxa and its implications for interpretation of ex-
perimental data in the context of functional diversity.

Mycelial growth

Marked intraspecific variation in rates of mycelial
growth in axenic culture has been reported for several
ECM fungal taxa (e.g. Theodorou and Bowen 1971;
Littke et al. 1984; Cline et al. 1987; Ho 1987; Hutchison
1990c; Meyselle et al. 1991; Kieliszewska-Rokicka
1992). A similar level of intraspecific variation may also
occur during growth through soil when in symbiosis
with a host plant (Colpaert et al. 1992; Lamhamedi et
al. 1992a; Thomson et al. 1994; Ek 1997; Timonen et al.
1997). This may influence host carbon allocation and
the extent of below-ground fungal respiration (Ek
1997). Extramatrical mycelial growth from the host
plant may further be influenced to a variable extent by
the nutrient status of soil, as shown for soil nitrogen
with Paxillus involutus (Batsch: Fr.) Fr. (Arnebrant
1994).

Temperature and/or pH may affect isolates of ECM
fungi differentially, with strains varying in temperature
optimum for growth (Laiho 1970; Theodorou and Bow-
en 1971; Samson and Fortin 1986; Cline et al. 1987)
and, in some cases, maximal growth temperature (Sam-
son and Fortin 1986). Although in most cases, tempera-
ture-related differences in growth rate show no appar-
ent correlation with the geographical origin of strains
(Samson and Fortin 1986; Cline et al. 1987; Tibbett et
al. 1998b), the optimal growth temperature of 11 USA
strains of Pisolithus tinctorius varied with the latitude
of their origin (Cline et al. 1987). Equally, while
marked intraspecific differences in response of Laccar-
ia laccata (Scop.: Fr.) Cooke and Cenococcum geophi-
lum Fr. to external pH have been observed, there was
no apparent relationship with the pH of the soils from
which the strains were isolated (Hung and Trappe
1983). It must be noted, however, that most of these
studies were conducted on a maximum of only four iso-
lates of each species. More extensive screening is re-
quired to infer such relationships with any confidence.

The growth form of mycelia may also vary within a
species, with particular isolates producing more-or-less
dense mycelia during growth on agar-based media

(Littke et al. 1984; Kieliszewska-Rokicka 1992). More
importantly, intraspecific variability in the ability to
produce rhizomorphs (sensu Cairney et al. 1991) may
also exist. A very useful approach to the study of intras-
pecific genetic variation in ECM fungi has been the
synthesis of artificial dikaryotic mycelia from monoka-
ryotic mycelia derived from sporocarps. The method
has the advantage of defined and closely-related ge-
netic material, commonly involving progeny derived
from a single sporocarp, but provides little indication of
the variation existing in the field. In a study of 78 dika-
ryotic mycelia synthesised in this way from single-spore
cultures of a South African Pisolithus species, Lamha-
medi and Fortin (1991) found that 37% of the dika-
ryons produced no rhizomorphs during growth on agar
media. The remaining mycelia produced rhizomorphs
under the same conditions, but varied in the number of
hyphae making up individual rhizomorphs. Even when
dikaryons were mycorrhizal with Pinus pinaster in
growth pouches, there was variation in the formation of
rhizomorphs. Only 37% of isolates produced fine myce-
lial aggregates, while the remainder produced more ro-
bust rhizomorphic structures (Lamhamedi and Fortin
1991). In a subsequent study of 16 dikaryons synthe-
sised from monokaryotic mycelia from a single Pisoli-
thus tinctorius (Pers.) Coker & Couch sporocarp, all
but one dikaryon produced rhizomorphs during sym-
biosis with Pinus elliottii (Rosado et al. 1994). Howev-
er, variation in the extent of rhizomorph growth was
observed among the dikaryons, stressing that both rhi-
zomorph development and growth can be variable in
even closely related Pisolithus isolates. The host geno-
type may also influence the extent of rhizomorph
growth (Rosado et al. 1994; Timonen et al. 1997). Since
rhizomorphs are believed to be important in bi-direc-
tional long-distance solute translocation and to provide
hyphae with a degree of protection against edaphic
stresses (see Cairney 1992), such variation in rhizo-
morph production and structure may influence the ef-
fectiveness of individual isolates of ECM fungal taxa as
mycobionts in the field.

Host-fungus interactions

A number of studies attest to significant variation in
the ability of isolates of some fungal species to form
ECM with particular host taxa (e.g. Marx 1981; Bough-
er et al. 1990; Jacobson and Miller 1992; Thomson et al.
1994; Bonfante et al. 1998). The ECM-forming abilities
of individual isolates may further be differentially in-
fluenced by soil conditions such as nutrient availability,
water status and/or temperature (Marx et al. 1970;
Bougher et al. 1990; Bougher and Malajczuk 1990;
Thomson et al. 1994). Indeed, the influence of different
isolates of some ECM species on the growth of host
plants may differ with the field conditions, with some
isolates performing better than others under particular
conditions (Le Tacon et al. 1992).
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Table 1 Ectomycorrhizal fungal taxa for which five or more isolates have been screened for variation in various parameters (ccc
much variation, cc some variation, c slight variation, – no significant variation)

Fungus Number
of
isolates

Parameter Varia-
tion

Reference

Amanita muscaria (L.: Fr.) Pers. 5 sensitivity to Zn ccc Brown and Wilkins (1985)
Fuscoboletinus aeruginascens (Secr.)
Pom & Smith

14 temperature optimum for growth cc Samson and Fortin (1986)

Fuscoboletinus paluster (Peck) Pom. 7 temperature optimum for growth ccc Samson and Fortin (1986)
Fuscoboletinus spectabilis (Peck) Pom.
& Smith

7 temperature optimum for growth P Samson and Fortin (1986)

Hebeloma cylindrosporum Romagn. 61a glutamate dehydrogenase activity ccc Wagner et al. (1988)
H. cylindrosporum 61a nitrate reductase activity ccc Wagner et al. (1989)
H. cylindrosporum 61a acid phosphomonoesterase activity ccc Meyselle et al. (1991)
H. cylindrosporum 61a IAA production ccc Gay and Debaud (1987)
H. cylindrosporum 50b nitrogen source utilization ccc Gay et al. (1993)
Laccaria bicolor (Maire) P.D.Orton 20b solubilisation of inorganic P sources ccc Nguyen et al. (1992)
L. bicolor 5b ECM formation ccc Kropp et al. (1987)
L. bicolor 0b ECM formation ccc Kropp and Fortin (1988)
L. bicolor 67 solubilisation of inorganic P sources ccc de la Bastide et al. (1995a)
Paxillus involutus (Batsch: Fr.) Fr. 9 pH optimim for growth ccc Laiho (1970)
P. involutus 9 temperature optimum for growth cc Laiho (1970)
P. involutus 9 carbon source utilisation ccc Laiho (1970)
P. involutus 9 nitrogen source utilisation ccc Laiho (1970)
P. involutus 8 acid phosphomonoesterase activity ccc Kieliszewska-Rokicka (1992)
P. involutus 18 sensitivity to Al ccc Rudawska and Leski (1998)
P. involutus 10 sensitivity to Zn ccc Denny and Wilkins (1987)
P. involutus 5 sensitivity to Cu ccc Howe et al. (1997)
Pisolithus tinctorius (Pers.) Coker &
Couch

11 temperature optimum for growth ccc Cline et al. (1987)

P. tinctorius 8 nitrate reducatse activity ccc Ho (1987)
P. tinctorius 8 acid phosphomonoesterase activity ccc Ho (1987)
P. tinctorius 8 alkaline phosphomonoesterase activity P Ho (1987)
P. tinctorius 8 acid phosphodiesterase activity c Ho (1987)
P. tinctorius 8 alkaline phosphodiesterase activity c Ho (1987)
P. tinctorius 8 cytokinin production ccc Ho (1987)
P. tinctorius 8 IAA production ccc Ho (1987)
P. tinctorius 8 gibberellin production ccc Ho (1987)
P. tinctorius 21 ECM formation cc Marx (1981)
P. tinctorius 16 ECM formation cc Rosado et al. (1994)
P. tinctorius 16 rhizomorph production cc Rosado et al. (1994)
Pisolithus sp. 78b ECM formation ccc Lamhamedi et al. (1990)
Pisolithus sp. 10b influence on host nutrition and growth ccc Lamhamedi et al. (1992a)
Pisolithus s. 10b influence on host drought tolerance ccc Lamhamedi et al. (1992a,b)
Pisolithus sp. 10 sensitivity to Al ccc Egerton-Warburton and Griffin

(1995)
Pisolithus sp. 41b antifungal activity ccc Kope and Fortin (1991)
Pisolithus sp. 78b rhizomorph production ccc Lamhamedi and Fortin (1991)
Pisolithus sp. I 30 nitrogen source utilisation ccc Anderson et al. (1999)
Pisolithus sp. II 6 nitrogen source utilisation ccc Anderson et al. (1999)
Pisolithus spp. 6 chemotropic effect of host roots ccc Horan and Chilvers (1990)
Pisolithus spp. (comprising several poly-
peptide groups)

20 ECM formation/influence on host
growth

ccc Burgess et al. (1994a)

Pisolithus spp. (comprising several poly-
peptide groups)

10 induction of host chitinase/peroxidase ccc Albrecht et al. (1994)

Scleroderma citrinum Pers. 5 acid phosphomonoesterase activity ccc Antibus et al. (1992)
Suillus bovinus (L.: Fr.) Rouss. (as Bo-
letus bovinus L.: Fr.)

5 carbon source utilisation c Ferry and Das (1968)

Suillus cavipes (Opat.) Smith & Thiers 8 temperature optimum for growth P Samson and Fortin (1986)
Suillus granulatus (L.: Fr.) O.Kuntze 8 temperature optimum for growth ccc Cline et al. (1987)
S. granulatus 12 ECM formation ccc Jacobson and Miller (1992)
Suillus grevillei (Klotzsche) Sing. 29 temperature optimum for growth c Samson and Fortin (1986)
Suillus luteus (L.: Fr.) Rouss. 12 sensitivity to Al ccc Leski et al. (1995)
Suillus placidus (Bon) Sing. 5 nitrogen source utilisation cc Keller (1996)
Suillus plorans (Roll.) O. Kuntze 6 nitrogen source utilisation ccc Keller (1996)
Suillus sibiricus (Sing.) Sing. 6 glucose oxidase activity ccc Iwase (1992)

a Mixture of wild-type and synthesised dikaryons
b Synthesised dikaryons
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As in studies of mycelial development, artificial di-
karyons have been used to investigate intraspecific var-
iability in fungus – host interactions. Dikaryons of Lac-
caria bicolor (Maire) Orton derived in this way have,
for example, been screened for their ability to form
ECM with Pinus banksiana (Kropp et al. 1987; Kropp
and Fortin 1988; de la Bastide et al. 1995b). Some dika-
ryons were able to readily form typical mycorrhizal
structures under a range of conditions, but others failed
to infect the host. The basis for the differential infectiv-
ity was suggested to reside in the ability of the dika-
ryons to produce hormones and enzyme activities and/
or differences in the fungus-root recognition process
(Kropp and Fortin 1988). The possibility that sponta-
neous mutation, and so a loss of ECM-forming ability,
occurred in some of the constituent monokaryotic my-
celia during culture storage (see below) could not, how-
ever, be ruled out (Kropp et al. 1987). More detailed
investigations of the process of ECM formation indi-
cate that variation exists in Laccaria bicolor dikaryons
in the extent to which a fungal sheath forms around
host roots and the depth to which Hartig net hyphae
penetrate (Wong et al. 1989, 1990a,b). Differences in
lectin-binding characteristics of dikaryon hyphae that
may relate to differential abilities in fungus-host recog-
nition have also been observed (Lei et al. 1991).

Phytohormone production has been shown to vary
strongly within ECM fungal species. Ethylene produc-
tion varies between isolates of Laccaria bicolor but
data so far obtained, albeit from only four synthesised
dikaryons, indicates no correlation with ECM-forming
ability (Livingston 1991). Indole-3-acetic acid (IAA)
production, suggested to be important in ECM differ-
entiation, is known to vary widely in Hebeloma, Pisoli-
thus and Rhizopogon species (Gay and Debaud 1987;
Ho 1987; Ho and Trappe 1987), as does cytokinin pro-
duction in Rhizopogon species (Ho and Trappe 1987).
The production of IAA in axenic culture, while in-
fluencing ECM-forming ability, is not strictly correlated
to the ability of individual isolates (of Hebeloma cylin-
drosporum Romagn. at least) to form ECM (Gay et al.
1994). Thus, production of hormones can, at best, only
partially explain the observed intraspecific variability in
the potential of ECM fungi to form mycorrhizas.

Intraspecific variation in ECM-forming characteris-
tics has also been studied in some detail for Pisolithus
species. Marx and colleagues (e.g. Marx 1979) observed
variation in infection levels and host growth responses
in field-collected North American isolates of Pisolithus
tinctorius. During screening of 78 dikaryons synthesised
by pairings of mycelia derived from germinated basid-
iospores of a single sporocarp of a South African Pisol-
ithus sp., Lamhamedi et al. (1990, 1992a, b) also noted
significant intraspecific variation in the ability of dika-
ryons to form ECM with Pinus banksiana and Pinus pi-
naster. Similar variation was reported among 16 syn-
thetic dikaryons derived from a single North American
Pisolithus tinctorius sporocarp with respect to their
ability to infect different families of Pinus elliottii (Ro-

sado et al. 1994). Intraspecific differences have also
been observed in the extent to which dikaryons stimu-
late host plant growth, increase nutrient content and
produce antifungal compounds (Lamhamedi et al. 1990,
1992a; Kope and Fortin 1991). The variation in host
benefit has been suggested to relate either to the per-
centage infection achieved by the mycelia (Lamhamedi
et al. 1990), the extent to which extramatrical mycelia
explore soil (Lamhamedi et al. 1992a), or a combina-
tion of the two. However, it is interesting to note in the
latter context that Ek (1997) found no relationship be-
tween the extent of extramatrical mycelial growth and
respiration and the amount of nitrogen transferred to
the host plant by two Paxillus involutus isolates. Intras-
pecific variation also appears to exist in the extent to
which dikaryons can protect the host against water
stress. Lamhamedi et al. (1992a, b) measured clear dif-
ferences in stomatal conductance, transpiration rate
and hydraulic conductance in Pinus pinaster infected
with different Pisolithus sp. dikaryons under different
soil moisture regimes. Plants infected with dikaryons
that produced extensive extramatrical mycelia were less
affected and recovered from water stress more readily
(Lamhamedi et al. 1992b). The ability to confer protec-
tion against water stress was not, however, strictly cor-
related with the production of large-diameter rhizo-
morphs (see above), suggesting that other physiological
factors influence this response.

While the variation observed by Lamhamedi and
colleagues clearly represents intraspecific variation in a
single Pisolithus species, the picture is less clear for oth-
er Pisolithus isolates. Recent molecular investigations
indicate that the group previously considered as a sin-
gle taxon (Pisolithus tinctorius) actually comprises a
number of more-or-less cryptic species (Anderson et al.
1998a; Martin et al. 1998), making difficult the task of
assessing intraspecific variation in field-collected iso-
lates of this taxon. It has been recognised for some time
that Pisolithus isolates collected from pine stands are
generally poorer colonisers of Eucalyptus spp. than
those collected from Eucalyptus stands (Malajczuk et
al. 1990). Indeed, at the ultrastructural level, differ-
ences in chemotropic response, rate of sheath forma-
tion and structure of the fungus-root interface formed
with eucalypts (namely thickened host epidermal cell
walls abutting the fungus and a lack of interfacial acid
phosphatase activity) suggest that pine isolates of Pisol-
ithus are recognised as incompatible by eucalypts (Ho-
ran and Chilvers 1990; Lei et al. 1990). Burgess et al.
(1994b) investigated total soluble polypeptide patterns
in 100 Australian Pisolithus isolates collected from un-
der a range of host trees and found a strong relation-
ship between groups of isolates with similar polypep-
tide profiles and their respective host tree species. The
ability of selected isolates to infect and influence the
growth of Eucalyptus grandis was subsequently as-
sessed. The results indicate considerable variation
(2–45 times greater growth than uninoculated controls)
within the sampled population (Burgess et al. 1994a).
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Evidence has also been obtained of altered symbiosis-
related peptide expression and patterns of host peroxi-
dase and/or chitinase activities thought to be important
in the establishment of the symbiosis (Albrecht et al.
1994; Burgess et al. 1995). Moreover, in addition to
pine isolates infecting Eucalyptus grandis poorly, these
authors found that isolates from stands of some West-
ern Australian indigenous Eucalyptus species colonised
Eucalyptus grandis (a native of Queensland) equally
poorly, suggesting variation in host preference within a
single host genus. The recent comparative rDNA inter-
nal transcribed sequence (ITS) comparison of isolates
from pine and eucalypt stands supports the existence of
separate Pisolithus species with preferences for either
host (Martin et al. 1998). Similarly, ITS sequence com-
parisons indicate that multiple Pisolithus species exist
in native Australian forest stands (probably with Euca-
lyptus spp. as hosts) (Anderson et al. 1998a), raising the
possibility of a degree of interspecific host preference
within Australian Pisolithus. Even within a single host
species, Pisolithus isolates can show variation in their
ability to infect different host genotypes. Tonkin et al.
(1989) showed that different clones of Eucalyptus mar-
ginata are differentially infected by Pisolithus isolates
from Eucalyptus marginata stands depending on the
maturity of the plant from which the clones were de-
rived.

A degree of variation in the ability to form ECM
with particular hosts has also been noted in Suillus
granulatus (L.: Fr.) O.Kuntze (Jacobson and Miller
1992). Specifically, isolates of this taxon from North
American Pinus strobus stands showed greater specific-
ity for their host (as determined by combined data for
percentage ECM colonisation, plant growth response
and Hartig net development) than isolates from Pinus
densiflora in Korea and Pinus wallichiana in Nepal.
Similarly, Bonfante et al. (1998) observed that two iso-
lates of Suillus collinitus (Fr.) O. Kuntze from Mediter-
ranean or alpine environments showed differential abil-
ities to successfully infect Pinus species from their re-
spective habitats. While these examples may indeed
represent intraspecific variation, the geographical sepa-
ration and/or restricted host availability of the popula-
tions and concomitant restricted gene flow may have
yielded cryptic biological species of Suillus granulatus
(Jacobson and Miller 1992). This, however, remains to
be resolved.

Nitrogen utilisation

Intraspecific variation in the extent to which various
inorganic and organic nitrogen sources are used for
growth has been observed in a number of taxa (Laiho
1970; Lundeberg 1970; Finlay et al. 1992; Gay et al.
1993; Keller 1996; Tibbett et al. 1998c; Anderson et al.
1999; Wallander et al. 1999). Physiological studies have
also highlighted intraspecific variation in rates of NH4

c

absorption (Littke et al. 1984) and in the activities of

the primary enzymes of inorganic nitrogen assimilation.
Although multiple isolates of only a few species have
been studied, variation in nitrate reductase activity can
be large (Ho 1987, 1989; Wagner et al. 1989). Indeed,
Ho and Trappe (1987) reported a 30-fold difference in
nitrate reductase activity between two isolates of Rhi-
zopogon vulgaris (Vitt.) M. Lange. Wide variation in
glutamate dehydrogenase activity has also been re-
ported in a large population of field-collected and syn-
thesised dikaryons of Hebeloma cylindrosporum
(Wagner et al. 1988). Interestingly, subsequent growth
experiments with the same dikaryons, while identifying
a small amount of variation in growth on different ni-
trogen sources, found no correlation between this and
the activities of primary enzymes of nitrogen assimila-
tion (Gay et al. 1993). The authors thus suggested that
nitrate reductase and glutamate dehydrogenase are not
growth-limiting in this fungus. They further stressed the
polygenic nature of the process of fungal growth and
that activity of a further key enzyme showing little in-
traspecific variation may limit growth in this fungus.
These are important observations and raise questions
about the suitability of growth experiments on indica-
tor substrates as presumptive indicators of enzyme ac-
tivity. Field surveys of d15N signatures of ECM fungal
sporocarps, thought to be indicative of the relative abil-
ities of the fungi to access organic nitrogen sources in
soil, indicate that large intraspecific variation occurs in
some taxa (Taylor et al. 1997). The extent to which
such variation reflects variation in intracellular nitrogen
fractionation, nitrogen source utilisation or availability
in soil microsites, however, has yet to be considered in
detail.

Enzyme activities

Extracellular and cell-surface-bound phosphatase activ-
ities are frequently implicated in the phosphorus nutri-
tion of ECM fungi and their hosts. While most ECM
fungi appear to produce these activities to some extent,
it is clear that significant intraspecific variation exists.
Ho (1987) screened eight USA Pisolithus tinctorius iso-
lates for cell-surface-bound phosphomono- and phos-
phodiesterase activities and found isolate-specific varia-
tion, particularly for acid phosphomonoesterase activi-
ty. There was no evidence that the differential activities
were related to the geographical origins of isolates.
Subsequent work in the same laboratory identified con-
siderable variation in cell-surface-bound acid phospho-
monoesterase activity in four Amanita muscaria (L.:
Fr.) Pers. isolates and in alkaline phosphomonoesterase
activity in three isolates of Suillus brevipes (Peck)
Kuntze (Ho 1989). Antibus et al. (1986, 1992), Kielis-
zewska-Rokicka (1992) and Cao and Crawford (1993)
recorded similar variation in cell-surface-bound acid
phosphomonoesterase activities in Cenococcum geophi-
lum (3 isolates), Scleroderma citrinum Pers. (5 isolates)
and Paxillus involutus (8 isolates) and Pisolithus tincto-
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rius (4 isolates), respectively. The small number of iso-
lates notwithstanding, activities for isolates from deci-
duous hosts were twice those of isolates from conife-
rous hosts. Variation in acid phosphomonoesterase ac-
tivity can be even greater, with Meyselle et al. (1991)
reporting up to 15-fold variation in activity in a popula-
tion of 61 field-collected isolates and/or artificially syn-
thesised dikaryotic mycelia of Hebeloma cylindrospo-
rum Romagn. Recent work also indicates extensive var-
iability in Hebeloma crustuliniforme (Bull.: Fr.) Quél,
with some isolates producing significantly more extra-
cellular and/or cell-surface-bound acid phosphomon-
oesterase activities than other isolates (Tibbett et al.
1998a, b).

Tibbett et al. (1998a, b) suggested that the enhanced
extracellular acid phosphomonoesterase activity at low
temperature in the Alaskan isolate reflects expression
of a cold-induced isozyme. There are many qualitative
reports of intraspecific variation in phosphomonoester-
ase isozymes in ECM fungi. Variable phosphatase iso-
zymes have been found within a number of ECM spe-
cies including Amanita muscaria (Ho 1989), Pisolithus
tinctorius (Ho 1987; Cao and Crawford 1993) and Rhi-
zopogon vinicolor Smith (Ho and Trappe 1987), along
with several Suillus species (Zhu et al. 1988; Ho 1989;
Sen 1990; Keller 1992; El Karkouri et al. 1996). These
authors have also identified considerable intraspecific
variation in isozymes of a range of intracellular en-
zymes of Suillus species, indicating considerable physi-
ological diversity. For some species, at least, variation
in isozyme pattern appears to be greater between iso-
lates from different forest regions than those collected
in single forest stands (Zhu et al. 1988; Sen 1990; El
Karkouri et al. 1996), suggesting that habitat variation
and/or host tree selection (see above) are important de-
terminants of variation. Interpretation of these data
are, however, limited by the relatively small numbers of
isolates so far investigated from individual sites (~15).
Lapeyrie et al. (1991) screened two isolates each of He-
beloma crustuliniforme, Paxillus involutus and Pisoli-
thus sp. for their relative abilities to solubilise phospho-
rus-containing mineral complexes. Even within such a
narrow population of isolates, intraspecific variation
was observed. For example, one Pisolithus sp. isolate
showed an apparent inability to solubilise the sub-
strates and one Paxillus involutus solubilised Ca-phy-
tate but not inorganic phosphate complexes; the other
isolates of both taxa solubilised at least some organic
and inorganic complexes relatively freely. Similarly,
considerable variation was observed in 67 field-col-
lected isolates of Laccaria bicolor, and within a popula-
tion of 20 synthesised dikaryotic mycelia derived from a
single sporocarp of the same taxon (Nguyen et al. 1992;
de la Bastide et al. 1995a). In the latter case, the phos-
phorus-solubilising ability of the dikaryons was distri-
buted around that of the parent mycelium but did not
appear to be heritable. The physiological mechanisms
underlying phosphorus solubilisation include proton
extrusion, organic acid production and/or phosphatase

activities. Organic acid production can vary strongly at
the intraspecific level (Iwase 1992); however, each of
these attributes seems likely to be polygenically con-
trolled and understanding the genetical basis of varia-
tion is difficult (Nguyen et al. 1992; de la Bastide et al.
1995a).

Although there has been little study of plant cell-
wall-degrading enzymes in multiple isolates of ECM
fungal taxa, variation here also seems likely to be con-
siderable. Giltrap (1982) conducted a series of pre-
sumptive tests for polyphenol oxidase activity. While
little activity was observed in 1–4 isolates of some spe-
cies, others such as Amanita rubescens (Pers.: Fr.)
S.F.Gray, Boletus subtomentosus L.: Fr. [p Xerocomus
subtomentosus (L.: Fr.) Quél.], Leccinum scabrum (L.:
Fr.) S.F.Gray and Suillus luteus (L.: Fr.) S.F.Gray de-
monstrated considerable intraspecific variation, with in-
dividual isolates displaying very strong phenol oxidising
activities. Similar intraspecific variation has been ob-
served in a range of other ECM taxa and is further
complicated by the fact that intraspecific variation ex-
ists also in the production of such activities on different
growth media in some taxa (Hutchison 1990b). Varia-
tion in activity has also been observed in four Pisolithus
tinctorius isolates for components of the cellulase com-
plex. Cao and Crawford (1993) reported that all four
isolates produced both a-galactosidase and b-glucosi-
dase, but only a single isolate produced b-galactosidase
activity. In addition, isoforms of a-galactosidase varied
with the isolate, with one isolate producing three iso-
forms of b-glucosidase not evident in the other strains.
Intracellular glucose oxidase activities, assayed in seven
Japanese isolates of Tricholoma robustum (Alb. &
Schw.: Fr.) Ricken s. Imazeki, varied by almost fourfold
(Iwase 1992). Two isolates of each of a number of other
Tricholoma species also showed variability (~10 times)
in this respect. Although not directly involved in de-
gradation of components of the plant cell wall, glucose
oxidase, along with other carbohydrate oxidases, has
been indirectly implicated in partial lignin degradation
by ECM fungi. These enzymes produce H2O2, which, in
the presence of Fe2c, produces hydroxyl radicals that
may contribute to lignin fragmentation (see Burke and
Cairney 1998). The data of Iwase (1992) suggest that
the ability of ECM fungi to modify lignin in this way
varies greatly, even within a species.

Metal sensitivity

A relatively large number of studies have addressed the
existence of intraspecific variation in the sensitivity of
ECM fungi to toxic metals. Even where relatively few
(~5) isolates have been used, it is clear that a large de-
gree of variation exists within some species in this re-
spect (Thompson and Medve 1984; Brown and Wilkins
1985; Colpaert and Van Assche 1987, 1992; Howe et al.
1997; Vodnik et al. 1998). Furthermore, the physiologi-
cal basis for insensitivity may vary within a species. For
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example, Howe et al. (1997) showed that two Cu-insen-
sitive isolates of Paxillus involutus accumulate Cu-bind-
ing proteins when exposed to the metal. A third, equal-
ly insensitive isolate did not accumulate such proteins,
suggesting that insensitivity in this isolate is mediated
by another mechanism. There may also be intraspecific
variation in the extent to which isolates mediate metal
insensitivity in their hosts. Aggangan et al. (1998)
found differences in the extent to which three isolates
of Pisolithus protected Eucalyptus urophylla against Ni.
While possibly reflecting intraspecific differences, these
data, however, are equally likely to represent intraspe-
cific differences recently observed in this taxon (see
above).

It has been suggested by some authors that such var-
iation is related to the metal status of the soils from
which particular strains were isolated, and that some
ECM fungal taxa thus demonstrate adaptive tolerance
to metals in the environment (e.g. Colpaert and Van
Assche 1987). In the case of Al sensitivity, broader-
scale screening experiments support this hypothesis for
some taxa, with Egerton-Warburton and Griffin (1995)
and Leski et al. (1995) demonstrating a strong correla-
tion between Al insensitivity and the concentration of
the metal in the environments from which isolates of a
Pisolithus sp. and Suillus luteus  were obtained. Varia-
tion in sensitivity to Al in 19 isolates of Paxillus involu-
tus, however, showed no relationship with the contami-
nation status of their soils of origin (Rudawska and
Leski 1998), suggesting constitutive sensitivity in this
species.

Although intraspecific variation exists in ECM fungi
with respect to sensitivity to other metals, evidence for
adaptive tolerance to these is less compelling, and the
data are somewhat contradictory. Thus, although varia-
tion in Zn sensitivity in five isolates of Amanita muscar-
ia was not related to Zn in their native soils (Brown
and Wilkins 1985), Colpaert and Van Assche (1987)
noted a much greater insensitivity in single isolates of
Aamanita muscaria, Suillus luteus, Suillus bovinus (L.:
Fr.) Rouss. and Thelephora terrestris Ehrh.: Fr. from a
severely Zn-contaminated site. Similarly, while record-
ing intraspecific variation, Denny and Wilkins (1987)
found no evidence for adaptive Zn insensitivity in 10
isolates of Paxillus involutus. Colpaert and Van Assche
(1992), meanwhile, reported that single isolates of
Amanita muscaria, Suillus luteus and Suillus bovinus
from heavily Cd-contaminated sites were significantly
less sensitive to Cd that those from unpolluted environ-
ments. The small sample size of the latter notwithstand-
ing, the apparent discrepancies may reflect the fact that
the Zn-contaminated environments from which Wilkins
and his colleagues collected their isolates were in fact
less contaminated by the metals than the sites from
which the insensitive isolates used by Colpaert and Van
Assche were collected (Colpaert and Van Assche
1987). Clearly more extensive collection and intraspe-
cific screening of strains from a range of environments
will be required to resolve this conflict.

Other considerations

Intrinsic variation may be confounded further by
changes that appear to occur in individual mycelia fol-
lowing isolation. There are several reports suggesting
that isolates of some fungal taxa demonstrate a de-
creased ability to form ECM with their hosts during
prolonged maintenance in axenic culture (Laiho 1970;
Marx and Daniel 1976; Marx 1981; Thomson et al.
1993). Inoculation of a host plant and subsequent re-
isolation of the fungus can often increase the mycorrhi-
za-forming efficacy of susceptible isolates (Marx 1981;
Thomson et al. 1993), although the ability to form
ECM may decline again in these isolates after only a
few months in axenic culture (Thomson et al. 1993).
Such a response is not, however, ubiquitous. Three iso-
lates of Laccaria bicolor showed no decrease in ECM-
forming ability during 18 years of continued subculture
under axenic conditions, nor did their ability to form
ECM increase following passage through a host plant
(Di Battista et al. 1996).

The Laccaria bicolor isolates studied by Di Battista
et al. (1996) did, however, display reduced mycelial
growth rates and decreased ability to produce sporo-
carps during long-term maintenance in culture. A re-
duction in the ability to initiate sporocarp formation
has also been reported for other ECM taxa during 11
year in axenic culture (Giltrap 1981). Similarly, myce-
lial growth rates of a variety of taxa were shown to de-
cline during axenic culturing over only a few months,
although infection of a host plant and re-isolation of
mycelia could mediate short-term enhancement of
growth rate (Thomson et al. 1993). Particular isolates,
at least of Pisolithus spp., may further display changes
in the growth form of mycelia, with variation in the ex-
tent of rhizomorph production having been noted in re-
plicate cultures of some isolates (Lamhamedi and For-
tin 1991), while a temporal switch from dense to diffuse
growth has been observed in another isolate (Anderson
et al 1999).

Physiological variation has also been recorded in re-
plicate cultures of individual isolates of various taxa.
Hutchison (1990a), for example, observed variation in
utilisation of various carbon and/or nitrogen substrates,
including urea, pectin, casamino acids and lipids. In
most cases, this variation was confined to the extent of
utilisation (presumed to reflect variation in production
of the necessary degradative enzymes), but in some in-
stances some replicates of particular isolates produced
no growth on a substrate while others did. It is not clear
whether these observations reflect temporal changes
due to storage in culture or some other source of varia-
tion. Scheromm et al. (1990), however, noted a decline
in the ability of an isolate of Hebeloma cylindrosporum
to utilise NH4

c as sole nitrogen source over a period of
only a few weeks. Furthermore, Anderson et al. (1999)
reported that, two isolates of a Pisolithus sp. main-
tained in culture for 110 years utilised protein in the
form of bovine serum albumin (BSA) relatively freely
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while recent (~1-year-old) isolates were limited in the
extent to which they utilised this substrate. Although
further work is required here, data to date suggest a
temporal change in the ability of this Pisolithus species
to utilise BSA.

Clearly, temporal variation in the growth, ECM-
forming abilitiy and physiology of ECM fungi can arise
during storage in axenic culture, even where continued
subculturing in the absence of a suitable host plant is
employed. Di Battista et al. (1996) suggested that such
variation represents phenotypic differences within iso-
lates, arising from modification (e.g. via DNA methyla-
tion) of genes involved in growth or mycelial physiol-
ogy. Alternatively, it may reflect chromosome polymor-
phisms arising from rearrangements of gene organisa-
tion during mitoses or via the action of transposable el-
ements (Di Battista et al. 1996). Where variation within
individual isolates cannot be related to storage in cul-
ture, it may indicate differential expression of genes at
points from which subcultures of mycelia from single
Petri dish cultures were initiated. As argued elsewhere,
expression of many genes will not be uniform even
within individual axenic mycelia of ECM fungi (see
Cairney and Burke 1996). Subculturing from different
regions (even within the growing front) of individual
mycelia may thus influence the outcome of short-term
experiments as hyphae in mycelial plugs initiate growth
and acclimate to the new growing medium. Such accli-
mation may be expressed in the form of different lag
phase lengths, which may influence growth and sub-
strate utilisation experiments (Finlay et al. 1992).

Conclusions

There is no doubt that interspecific differences exist in
the functional roles played by ECM fungi in forest eco-
systems; however, we currently have scant appreciation
of the extent of such diversity. This may be partly ex-
plained by the tremendous taxonomic diversity of my-
cobionts believed to prevail globally and by the fact
that, to date, only a handful of taxa have been investi-
gated in any detail. Our understanding of functional
diversity is further hampered by the degree of intraspe-
cific variation identified in the few ECM taxa so far
studied in detail. It seems likely that some of the ob-
served intraspecific variation represents ecotypic adap-
tation according to environmental pressures in different
geographical regions or, on a smaller scale, to localised
heterogeneity in edaphic conditions. With the excep-
tion perhaps of differential sensitivity to Al, however,
this question has not been addressed in sufficient detail.
While a few studies have aspired to such comparisons,
the numbers of isolates screened from different envi-
ronments have been small, precluding meaningful data
analysis. It is only through extensive multi-isolate
screening that the extent of ecotypic adaptation can be
ascertained.

Some apparent intraspecific variation may reflect
misidentification of isolates, such as the apparently fac-

ultatively saprophytic strains of Bjerkandera subtomen-
tosus reported by Lundeberg (1970) which were later
identified as isolates of the wood-rotting Bjerkandera
adusta (Willd.: Fr.) Karst (see Hutchison 1990a).
Equally, as appears to be the case with Pisolithus spe-
cies for example, variation may reflect the existence of
separate biological species within what has been pre-
viously regarded as a single species grouping. Thus iso-
lates separated by differential host species availability
or simply by geographic isolation may, through reduced
gene flow or other mechanism, lose mating compatibili-
ty (see Molina and Trappe 1986; Jacobson and Miller
1992).

There is a need also to critically assess axenic cul-
ture-based work in the light of changes in gene expres-
sion that have been shown to occur during maintenance
under standard laboratory conditions. From the data
summarised in this review, it is clear that a comparative
study between, for example, a single newly obtained
isolate of one taxon and a single isolate of another tax-
on maintained in axenic culture for a number of years is
likely to provide no useful information regarding their
comparative ecological functioning. Yet experiments of
this nature continue to be conducted and conclusions
regarding ecological functioning inferred from the pub-
lished data.

Changes in gene expression in ECM fungi have been
shown to occur as a result of interaction with a host
plant in symbiosis (Tagu and Martin 1996; Tagu et al.
1996). It can thus be argued that physiological and/or
morphological traits expressed in axenic culture do not
necessarily reflect those expressed by the fungi under
the influence of a host plant in symbiosis. This clearly
increases the difficulties in extrapolating data from
such experiments to ecological functioning in the field.
While this is undoubtedly so, we must be mindful that
several of the caveats outlined above for axenic culture
studies also apply to work with intact fungus – plant
systems. In particular, considerable intraspecific varia-
tion has been demonstrated in the extent and morpho-
logical development of extramatrical mycelial systems,
meaning that, even in planta, extensive screening of
studies using multiple isolates are required to give a
reasonable estimate of mycelial characteristics. We
must assume the same to be true also for physiological
characteristics of extramatrical mycelial systems. Al-
though only studied so far using isolates of Paxillus in-
volutus, it is clear that intraspecific variation exists in
terms of the cost-benefit of association with a single
host species. Isolates of Paxillus involutus are known to
vary in the extent to which they transfer absorbed NH4

c

to the host (Wallander et al. 1999). Ek (1997) has also
shown intraspecific variability in the ratio of host-de-
rived carbon allocated to fungal biomass and respira-
tion: nitrogen transfer to the host plant. Furthermore,
in a heterogeneous substrate such as soil, individual
ECM mycelia display considerable spatio-temporal het-
erogeneity in physiological and morphological charact-
ers (Ek et al. 1994; Cairney and Burke 1996; Timonen
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and Sen 1998) that will serve to confound simplistic in-
terpretation of the functional contributions of individu-
al taxa. Phenotypic variation of this nature, arising from
epigenetic events and/or altered gene expression has,
for example, been documented in mycelia derived from
different regions of individual Laccaria bicolor genets
(de la Bastide et al. 1995a). Consequently, although we
might intuitively predict that populations of ECM fun-
gal species comprising a few large mycelial genets (e.g.
Dahlberg and Stenlid 1994; Anderson et al. 1998b;
Bonello et al. 1998) will exhibit less functional variation
than a localised population of many short-lived genets
(e.g. Gryta et al. 1997), this may not necessarily be the
case. Spatio-temporal variation in activities within a
single large mycelium may be great and, if not consid-
ered, has the potential to further cloud our vision of the
functional significance of ECM fungal taxa in forest
ecosystems.
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